

Mitigating Murphy's Law While Test

Curriculum Vitae

Frédéric Dollinger

- HAEFELY HIPOTRONICS factory Basel – Switzerland
- Area Sales & Marketing Manager
- Dipl. –Ing. / M.Sc. Mechatronic
- Language: English, German, French
- fdollinger@haefely.com

About Us

History

4

Our Product Range

Agenda

- Introduction to Murphy's Law
- Murphy's Law Case Study
- Cases Study Analysis

6

Introduction to Murphy's Law

Anything that can go wrong will go wrong

8

Case study

- Origin: this study shares what has been seen and experienced onsite from us
- Target: provide important insight and illuminate previously hidden issues
- **Systematic approach:** each case is studied with the mention of the fault, the cause of the fault, the consequence and the solution.

9

Murphy's Law – Case Study

Situation

Induced Voltage Test

Problem

C-Bank explosion

Factory on fire

Cause

C-Bank was in the test circuit during the induced voltage test

Consequence

72 kV / 200 Hz applied on a 20 kV 60 Hz C-Bank

Difficulty: Low

Failure: System

Can be avoided: Yes

Dangerous: Yes

- Classic test system for induced voltage test, no load and load loss, heat run
- Typical example for heat run: 20 kV / 60 Hz
- Typical example for induced voltage test: 72 kV / 200 Hz

C-Bank fire is most of the time a dramatic situation, as the bank is installed inside the factory!

Solution: overall test system intelligence should avoid dangerous situation!!

Situation

Onsite DC Hipot on submarine cable

Problem

Ultra high voltage DC generator breaks down

Difficulty: Low

Failure: human

Cause

Customer replaced the damping resistance, which was wrongly designed

Consequence

After cable break down, the flash went back to the DC generator, the damping resistance could not stop the high current and the DC generator breaks down

Can be avoided: Yes

Dangerous: Yes

- Onsite test on a 35 km submarine cable
- The onsite test cabin was too small
- Customer decides the replace the damping resistor with a shorter damping resistor. (same resistance value!)
- DC hipot at 380 kV
- Breakdown of the cable
- Flash back with huge current to the damping resistor, the flash goes over the resistor and destroys the generator

Situation Applied voltage test	Problem Flash	Difficulty: Low
		Failure: Human
Cause Wrong divider ratio setting	Consequence Flash	Can be avoided: Yes
		Dangerous: Yes

Situation

Cause

Impulse test on power transformer

Problem

Overlapping oscillation

Consequence

Impulse generator too far from High test object, no-air cushion to L_{loop} move it closer to the test object

High loop inductance

Difficulty: Low

Failure: System

Can be avoided: Yes

Dangerous: No

Relative overshoot magnitude ß' shall not exceed 5% (IEC 60076-3 ed3.0)

- Usual test setup for LI test
- The higher L_{loop}, the higher overlapping oscillation

C's: resulting impulse capacitance

R's: Front (series) resistor

R'p: Tail (parallel) resistor

L_{loop}: inductance of test circuit

Impulse Generator

Transformer

L_b: inductance of transformer

C_b: capacitance of transformer

Solution: have an impulse generator with air cushion

Solution: have an impulse generator with air cushion

Situation

LI test on power transformer, on the low voltage side

Problem

Tail time t₂ too short, out of the IEC 70076.3 ed 3.0 specification

Cause

Very low transformer winding inductance

Consequence

Short Tail time t_2 Does not fulfill IEC 70076.3 ed 3.0 Difficulty: Low

Failure: System

Can be avoided: Yes

Dangerous: No

- IEC 60076-3 ed 3.0
 - 13.2 Full wave lightning impulse test (LI)
 - Wave shape, determination of test voltage value and tolerances

The test impulse shall be a full standard lightning impulse $1.2 \pm 30 \% / 50 \mu s \pm 20 \%$..

The test voltage value shall be the test voltage value as defined in IEC 60060-1 (after the test voltage function is applied). If the maximum relative overshoot magnitude is 5 % or less, the test voltage value may be taken as the extreme value as defined in IEC 60060-1.

3.6kV, 15%

17.5kV, 15%

52kV, 15%

Case Study: Imp 2

Generator configuration	Tail time T₂ [μs]
1s2p with Rp	16.7
1s6p with Rp	17.2
1s2p with Rp and Glan- inger	45.1

- Even with more capacitance, T₂ would not rise
- Glaninger: T₂ is 270 % higher as with the 1s2p config.
- Glaninger is the smart solution

Solution: Glaninger Circuit

Situation

Impulse voltage test

Problem:

During the impulse generator configuration: low / medium energy discharge

Cause

Capacitor was not grounded after use; the capacitor is charging alone back due to internal polarization phenome

Consequence

to the operator

Risk of low / medium discharge to the operator, risk to fall down from the sky lift Difficulty: Low

Failure: System

Can be avoided: Yes

Dangerous: Yes

Caution without grounding: Risk of discharge!

the capacitor is charging alones back due to internal polarization phenome

Cap.: 1-3 uF / 100 KV

Solution: Auto. grounding

Situation Problem
PD measurement Flash

Cause Consequence
Floating coupling capacitor Flash between divider and ground

Difficulty:
High

Failure:
Human

Can be avoided:
Yes - no

Dangerous:

- Usual test setup: AC source + coupling capacitor + meas. Imp. + PD detector
- Test engineer has 2 PD detectors / measuring impedances (end user request)
- He changes the measuring impedance and forgets to ground it
- Coupling capacitor is floating
- Flash occurs while rising voltage
- After power off, the coupling cap.
 remains charged:
 dangerous situation

upling cap.

Coupling capacitor U = 0 VPD detector

Measuring impedance

Test object

Situation

PD Measurement on transformer

Problem:

Wrong PD values/measurement

Difficulty: Low

Failure: Human

Cause

Operator did not calibrate the measuring circuit for each new test object

Consequence

Each test object has different capacitance, which makes impossible to know the PD amplitude

Can be avoided: Yes

 \blacksquare Calibration procedure: inject an know q_0 impulse and adjust the ratio at the detector.

Situation

PD Measurement on transformer

Problem:

High PD values/measurement

Difficulty: Medium

Failure: System

Cause

Fixed dead time leading to ambiguous recognition of partial discharge pulse

Consequence

Partial discharge undershoot is interpreted as pulse

Can be avoided: Yes

Dynamic dead time VS fixed dead time

- Dynamic dead time: 1 pulse
- Fixed dead time: up to 3 pulses

Typical situation:

- This is one partial discharge pulse
- Dead time: time to blind out the undershoot

Dynamic dead time VS fixed dead time:

- Pulse polarity:
 - a) ambiguous recognition due to **fixed** dead time, wrongly set
 - b) distinct recognition without ambiguity, thanks to dynamic dead time (automatic)

- Dynamic dead time VS fixed dead time:
 - Challenge with fixed dead time settings: each PD source might need another setting!

- Inner PD source
 - Internal cavity/void in insulating material
 - Air bubbles in oil
 - Non-uniformities in SF6 insulation system
- Outer PD source:
 - Corona
 - Surface (gliding/creeping discharges)

Situation

PD Measurement on transformer

Problem:

Wrong PD measurement

Difficulty: Low

Failure: System / human

Cause

Measurement out of the IEC standard measurement band (higher frequency range)

Consequence

On the higher frequency range, the PD activity is not visibible anymore Can be avoided: Yes

- Wide-band PD instruments (chapter 4.3.4 in IEC 60270:2015)
 - $30 \text{ kHz} \le \text{f1} \le 100 \text{ kHz}$,
 - $f2 \le 1000 \text{ kHz}$
 - 100 kHz $\leq \Delta f \leq 900$ kHz
 - PD pulse loses high frequency content while travelling thru transformer

Case Study: WR 1

Situation

Cause

Onsite winding resistance measurement on power transformer

Problem

At transformer reconnection, the substation switches off

Difficulty: Low

Failure: System

Consequence

The winding resistance is a DC measurement. The core remains magnetized after measurement

-Magnetized core

-DC offset

-Inrush current

-Substation switches off

Can be avoided: Yes

Dangerous: Yes

	1.	_ 1'	!
<u> </u>	ITI	ΙЗΤΙ	on
	ILU	ıaı	

Load Loss measurement on a power transformer

Problem

Higher loss readings

Cause

Wrong accuracy class of the Wattmeter

Consequence

Small power factor leads to high loss error readings

Difficulty: Low

Failure: System

Can be avoided: Yes

- Phase angle error of 1min in the voltage or current will result in approx. 3 % error in loss meas. for a power factor of 0.01
- Load loss at low power factor are very sensitive to phase angle errors

IEEE Std C57.123-2010 [4.3]

- During meas: the transformer behaves inductive
- Power factor tends to fall with rising values of rated power
 - Typical example:
 - 1'000 kVA transformer: load loss 1 %, short circuit impedance 6 % of ref. impedance power factor of the series impedance: 0.167
 - **100 MVA transformer**: load loss 0.4 %, short circuit impedance 15 % of ref. impedance power factor of the series impedance: **0.027**

$$P = U \times I \times \cos\phi$$

$$\frac{\partial P}{P} = \frac{\partial U}{U} + \frac{\partial I}{I} - \frac{\sin\phi}{\cos\phi} \times \partial\phi$$

$$-\frac{\sin\phi}{\cos\phi} = -\frac{\left(1 - \cos^2\phi\right)^{\frac{1}{2}}}{\cos\phi} \approx -\frac{1}{\cos\phi}$$

IEC 60076-8:1997

10.2 Traceability, quality aspects on measuring technique

Traceability of measurements means that a chain of calibrations and comparisons have been carried out, through which the validity of the individual measurement can be traced back to national and international standards of units preserved in recognized institutions of metrology. Evidence of such traceability should contain the following items.

a) Certified information about errors (amplitude errors and phase angle errors) of the components of the measuring system (transducers for voltage, current and power, voltage dividers and shunts, indicating or recording instruments, etc.)

This may comprise:

- certificates from the manufacturers of individual components;
- certification from calibrations carried out at independent precision laboratories;
- certificates of calibrations made in the plant by means of precision instrumentation and specialist staff brought there for that purpose;
- direct comparisons of the test room installation with a complete precision measuring system (overall system calibration).

Power Factor	Components Accuracy ¹ Standard ² Extended ³		actor		Range	
cos φ = 1.0	± 0.15%	± 0.06%	± 0.35%	± 0.3%	105V/√3V 4200V/√3V; 0.5A 500A	
cos φ = 0.5	± 0.5%	± 0.12%	± 0.7%	± 0.3%	105V/√3V 4200V/√3V; 0.5A 500A	
$\cos \phi = 0.3$	± 0.79%	± 0.16%	± 1.2%	± 0.4%	105V/√3V 4200V/√3V; 0.5A 500A	
cos φ = 0.1	± 2.14%	± 0.36%	± 3%	± 1.2%	105V/√3V 4200V/√3V; 0.5A 500A	
Voltmeter	Class 0.1				Ratio 3500V/√3 : 100V Range 105V/√34200V/√3 (3%120%)	
Currentmeter	Clas	s 0.1			0.5A 500A	

		4	
C.	141	101	ion
. –		1/11	1() 1
\sim		лαι	

No Load Loss measurement on a distribution transformer

Problem

Higher loss readings

Cause

Deviation on the excitation voltage

Consequence

Higher loss readings

Difficulty: Low

Failure: System

Can be avoided: Yes

- 1% deviation on the applied voltage would increase 1% to 3 % the losses
- Solution: accurate voltage output (step less adjustment, feedback loop with the measurement)

During no load loss measuring, the transformer is in the saturation working area

^ :	4	4		
C, 1	+	\sim t	-	-
. TI		71	I/ 1	
VI	ιч	at	ıv	

No Load Loss measurement on a distribution transformer

Problem

Higher loss readings

Cause

High THD on the voltage waveshape

Consequence

Higher loss readings

Difficulty: Low

Failure: System

Can be avoided: Yes

- T.H.D.: Total Harmonic Distortion
- IEC 60076-1:2011 [11.1.1]: Voltage: THD < 5%</p>

T.H.D. cause:

T.H.D. on the voltage waveshape comes mainly from the short circuit impedance of the test system

T.H.D. problem:

Peaked waves with higher r.m.s. can lead to higher losses

Example on a 2'500 kVA, 33 kV / 400 V transformer

Without THD Control

With THD Control

		Phase A	Phase B	Phase C	SUM/AVG	
Voltage RMC	-	230.501 v_	229.952 V_	230.344 V_	230 266 V	
Loss	-	813.000 W	603.000 W	1.410 kV	2.826 kW	3% Difference
cos(Φ)	¥	0.293	0.307	0.531	0.385	
Current [%]	1	28.852 %	20.431 %	27.560 %	25.614 %	
U THD	•	0.865 %	1.050 %	0.868 %	0.926 %	
U THD	1	0.865 %	1.050 %	0.868 %	0.926 %	
$cos(\Phi)$	-	0.293	0.307	0.531	0.385	
Idle Power	-	2.657 kvar	1.870 kvar	2.248 kvar	6.776 kvar	
U THD	¥	0.865 %	1.050 %	0.868 %	0.926 %	
	Ī		7			

Example on a 2'500 kVA, 33 kV / 400 V transformer

Without THD Control

With THD Control

Example on a 2'500 kVA, 33 kV / 400 V transformer

Without THD Control

With THD Control

		4	
C.	141	101	ion
. –		1/11	1() 1
\sim		лαι	

No Load Loss measurement on a distribution transformer

Problem

Higher loss readings

Cause

Unsymmetric voltage waveshape

Consequence

Higher loss readings

Difficulty: Low

Failure: System

Can be avoided: Yes

Example on a 2'500 kVA, 33 kV / 400 V transformer

Without Symmetry Control

	Phase A		Phase B	Phase C	SUM/AVG	
oltage RMC	*	232.147 V_	234.035 v_	230.442 v	232.208 V_	
oss	•	1.073 kW	040.000 W	1.290 kW	2.909 kW	
os(Φ)	•	0.328	0.211	0.482	0.040	
urrent [%]	¥	33.852 %	26.483 %	27.967 %	29.434 %	
THD	+	2.450 %	2.170 %	2.760 %	2.460 %	
THD	-	2.450 %	2.170 %	2.760 %	2.460 %	
os(Φ)	-	0.328	0.211	0.482	0.343	
le Power	Ŧ	3.087 kvar	2.530 kvar	2.347 kvar	7.963 kvar	
THD	-	2.450 %	2.170 %	2.760 %	2.460 %	

With Symmetry Control

		- nuse A	Phase B	Place C	SUM/AVG	
Voltage RMC		230.501 v_	229.952 V_	230.344 4	230.266 V	
Loss	-	813.000 W	603.000 W	1.410 kW	2.826 kW	3% Difference
cos(Φ)	+	0.293	0.307	0.531	0.380	3 /0 Dillerence
Current [%]	•	28.852 %	20.431 %	27.560 %	25.614 %	
U THD	-	0.865 %	1.050 %	0.868 %	0.926 %	
U THD	•	0.865 %	1.050 %	0.868 %	0.926 %	
$cos(\Phi)$	-	0.293	0.307	0.531	0.385	
Idle Power	-	2.657 kvar	1.870 kvar	2.248 kvar	6.776 kvar	
U THD	-	0.865 %	1.050 %	0.868 %	0.926 %	

Situation	Problem	Difficulty: Low
No Load Loss measurement on a transformer	Higher loss readings	
		Failure: Human
Cause Magnetized core	Consequence Higher loss readings	Can be avoided: Yes
		Dangerous: No

Difficulty:

- Prehistory of magnetization
 - Remanence in the core after saturation during winding resistance meas. or by unidirectional long-duration impulses, may leave a trace in the no load loss meas.
 - A systematic demagnetization of the core before no load meas. is recommended to establish representative results

IEEE Std C57.123-2010 [3.2.2] 60076-8 IEC:1997 [9.6]

 ABB Book: ABB_2010_Testing of Power Transformers and Shunt Reactors, Routine Type and Special Tests, page 72 - the No-Load loss:

Before the loss measurements actually take place the transformer to be tested must be excited by 1,1 to 1,15 times rated voltage. The over-excitation reduces the effects of remanence caused by DC current excitation during resistance measurements or from the switching impulse. The correct no-load loss cannot be seen until there have been several cycles of the magnetizing characteristic. During this process the readings of the ammeters and wattmeter decrease. When the measured figures are steady, the actual loss measurements can start.

Situation

FRA Measurement on power transformer

Problem:

Measurement differs from reference

Difficulty: Medium - High

Failure: human

Can be avoided: Yes

Dangerous: No

Cause

Multiple: Oil, magnetization, connection, temperature

Consequence

FRA shows deviation

Power Transformer filled with different oil onsite as at the factory

Figure B.12 - Effect of different types of insulating fluid on frequency response

Power transformer measured onsite before filling the oil

Figure B.13 – Effect of oil filling on frequency response

 Power transformer measured after winding resistance measurement without demagnetization

Figure B.14 – Effect of a DC injection test on the frequency response Ref: IEC 60076-18 ed 1.0

Power transformer measured at different temperature

Figure B.16 – Effect of temperature on frequency response

Power transformer measured with bad connection

Figure B.17 – Examples of bad measurement practice

At the highest frequencies of above 1 MHz (> 72,5 kV) or above 2 MHz (\leq 72,5 kV), the response is less repeatable and is influenced by the measurement set-up, especially by the earthing connections, which effectively relies on the length of the bushing.

- A core
- B interaction between windings
- C winding structure
- D measurement setup and lead (including earthing connection)

- A connection clamp
- B unshielded length to be made as short as possible
- C measurement cable shield
- D central conductor
- E shortest braid
- F bushing
- G earth connection
- H earth clamp
- I tank
- J smallest loop

C.	.+.	10	+.	_	n
. –		17		()	11
\smile		Ja	u	v	

Power factor measurement on transformer

Problem:

Wrong measurement

Low

Difficulty:

Failure: human

Cause

Dirty bushing

Consequence

Leakage current increases the power factor

Can be avoided: Yes

Situation

Power factor measurement on transformer

Problem:

Wrong measurement

Failure:

Difficulty:

Low

Cause

High humidity during the measurement (morning, after rain, snow, etc...)

Consequence

Leakage current increases the power factor

Can be avoided: Yes

Dangerous: No

- Rules of dump
 - 65 % rel. humidity: 10 x higher leakage current
 - 80 % rel. humidity: 100 x higher leakage current
 - 95% rel. humidity: 1000 x higher leakage current
- Depending on the test object, leakage current can have a large impact. We do not recommend to measure above 65 % - 80 % rel. humidity

	 4.5	
C.	 101	\sim
. 🦳	 1711	
\smile	 uati	

Power factor measurement on transformer

Problem:

Wrong measurement

Cause

Wrong temperature correction

Consequence

Temperature correction depends on the test object. A wrong setup gives high deviation Difficulty: Low

Failure: human

Can be avoided: Yes

Dangerous: No

Temperature correction example

Situation

Power factor measurement on transformer

Problem:

Impossible to perform correct measurement

Difficulty: Low

Failure: System

Cause

GST setup is needed, but the power supply is not compatible

Consequence

If the power supply does not have a separate ground output, is it impossible to perform a GST measurement.

Can be avoided: Yes

Dangerous: No

UST and GST test setup:

Ungrounded specimen test **UST**

Grounded specimen test **GST**

Cases Study Analysis

Anything that can go wrong will go wrong,

But all situations could have been avoided!!!!!!!!

Technology level

If a system is the cause of a fault, upgrading the system would be the solution

Better technology will avoid system failure!

Safety

Half of the dangerous situations are caused by the system technology. Upgrading the system would fix the problem.

Think safety first and if requested upgrade the system!

Knowledge

Half of the problems are linked to operator knowledge. Read the user manual first and get trained!

計断 Merci ありがとう